Issue 8, 2012

Reduced graphene oxides by microwave-assisted ionothermal treatment

Abstract

Given their potential applications in electronic and optoelectronic devices and circuits, reduced graphene oxides (RGOs) have attracted considerable interest. However, more facile and environmentally friendly reduction methods, whether thermal or chemical reduction methods, still need to be further exploited. In this paper, a facile and environmentally friendly method was developed to reduce the graphene oxides (GOs) homogeneously exfoliated in ionic liquids by microwave-assisted ionothermal treatment under relative low temperature (200 °C) and atmospheric pressure. UV-visible absorption spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, X-ray diffraction pattern, atomic force microscopy, X-ray photoelectron spectroscopy, elemental analysis, thermogravimetric analysis and electrical conductivity measurement were used to confirm the formation of RGOs with a high reduction degree. The large enhancement of C/O atomic ratio (from 1.32 to 7.65) and at least four orders of electrical conductivity rise of RGOs compared with GOs revealed the high deoxygenation and graphitization efficiency of this method. In addition, the conductive RGOs could be successfully exfoliated to a single layer in some organic solvents, which is paramount for their scalable applications. In consideration of the involatile and recyclable nature of ionic liquids, this novel method can be considered as an economical and green thermal reduction route.

Graphical abstract: Reduced graphene oxides by microwave-assisted ionothermal treatment

Article information

Article type
Paper
Submitted
15 Mar 2012
Accepted
30 May 2012
First published
13 Jun 2012

New J. Chem., 2012,36, 1684-1690

Reduced graphene oxides by microwave-assisted ionothermal treatment

B. Wang, X. Wang, W. Lou and J. Hao, New J. Chem., 2012, 36, 1684 DOI: 10.1039/C2NJ40204A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements