Issue 21, 2012

Unzipping the role of chirality in nanoscale self-assembly of tripeptide hydrogels

Abstract

Change of chirality is a useful tool to manipulate the aqueous self-assembly behaviour of uncapped, hydrophobic tripeptides. In contrast with other short peptides, these tripeptides form hydrogels at a physiological pH without the aid of organic solvents or end-capping groups (e.g. Fmoc). The novel hydrogel forming peptide DLeu-Phe-Phe (DLFF) and its epimer Leu-Phe-Phe (LFF) exemplify dramatic supramolecular effects induced by subtle changes to stereochemistry. Only the D-amino acid-containing peptide instantly forms a hydrogel in aqueous solution following a pH switch, generating long fibres (>100 μm) that entangle into a 3D network. However, unexpected nanostructures are observed for both peptides and they are particularly heterogeneous for LFF. Structural analyses using CD, FT-IR and fluorescent amyloid staining reveal anti-parallel beta-sheets for both peptides. XRD analysis also identifies key distances consistent with beta-sheet formation in both peptides, but suggests additional high molecular order and extended molecular length for DLFF only. Molecular modelling of the two peptides highlights the key interactions responsible for self-assembly; in particular, rapid self-assembly of DLFF is promoted by a phenylalanine zipper, which is not possible because of steric factors for LFF. In conclusion, this study elucidates for the first time the molecular basis for how chirality can dramatically influence supramolecular organisation in very short peptide sequences.

Graphical abstract: Unzipping the role of chirality in nanoscale self-assembly of tripeptide hydrogels

Supplementary files

Article information

Article type
Paper
Submitted
25 Jul 2012
Accepted
10 Aug 2012
First published
15 Aug 2012

Nanoscale, 2012,4, 6752-6760

Unzipping the role of chirality in nanoscale self-assembly of tripeptide hydrogels

S. Marchesan, L. Waddington, C. D. Easton, D. A. Winkler, L. Goodall, J. Forsythe and P. G. Hartley, Nanoscale, 2012, 4, 6752 DOI: 10.1039/C2NR32006A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements