Issue 2, 2013

Relating nanomaterial properties and microbial toxicity

Abstract

Metal and metal oxide nanoparticles are among the most commonly used nanomaterials and their potential for adversely affecting environmental systems raises concern. Complex microbial consortia underlie environmental processes, and the potential toxicity of nanoparticles to microbial systems, and the consequent impacts on trophic balances, is particularly worrisome. The diverse array of metal and metal oxides, the different sizes and shapes that can be prepared and the variety of possible surface coatings complicate assessments of toxicity. Further muddling biocidal interpretations are the diversity of microbes and their intrinsic tolerances to stresses. Here, we review a range of studies focused on nanoparticle–microbial interactions in an effort to correlate the physical–chemical properties of engineered metal and metal oxide nanoparticles to their biological response. General conclusions regarding the parent material of the nanoparticle and the nanoparticle's size and shape on potential toxicity can be made. However, the surface coating of the material, which can be altered significantly by environmental conditions, can ameliorate or promote microbial toxicity. Understanding nanoparticle transformations and how the nanoparticle surface can be designed to control toxicity represents a key area for further study. Additionally, the vast array of microbial species and the structuring of these species within communities complicate extrapolations of nanoparticle toxicity in real world settings. Ultimately, to interpret the effect and eventual fate of engineered materials in the environment, an understanding of the relationship between nanoparticle properties and responses at the molecular, cellular and community levels will be essential.

Graphical abstract: Relating nanomaterial properties and microbial toxicity

Article information

Article type
Feature Article
Submitted
24 Aug 2012
Accepted
12 Nov 2012
First published
15 Nov 2012

Nanoscale, 2013,5, 463-474

Relating nanomaterial properties and microbial toxicity

A. K. Suresh, D. A. Pelletier and M. J. Doktycz, Nanoscale, 2013, 5, 463 DOI: 10.1039/C2NR32447D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements