Issue 1, 2013

New routes to Cu(i)/Cu nanocatalysts for the multicomponent click synthesis of 1,2,3-triazoles

Abstract

An array of copper and copper–zinc based nanoparticles (NPs) have been fabricated employing a variety of polymeric capping agents. Analysis by TEM, XRPD and XPS suggests that by manipulating reagent, reductant and solvent conditions it is possible to achieve materials that are mono-/narrow disperse with mean particle sizes in the ≤10 nm regime. Oxidative stability in air is achieved for monometallic NPs using poly(methyl methacrylate) (PMMA) anti-agglomerant in conjunction with a variety of reducing conditions. In contrast, those encapsulated by either poly(1-vinylpyrrolidin-2-one) (PVP) or poly(4-vinylpyridine) (PVPy) rapidly show Cu2O formation, with all data suggesting progressive oxidation from Cu to Cu@Cu2O core–shell structure and finally Cu2O. Bimetallic copper–zinc systems, reveal metal segregation and the formation of Cu2O and ZnO. Catalysts have been screened in the synthesis of 1,2,3-triazoles through multicomponent azide–alkyne 1,3-dipolar cycloaddition. Whereas PMMA- and PVPy-coating results in reduced catalytic activity, those protected by PVP are highly active, with quantitative triazole syntheses achieved at room temperature and with catalyst loadings of 0.03 mol% metal for Cu and CuZn systems prepared using NaH2PO2, N2H4 or NaBH4 reductants.

Graphical abstract: New routes to Cu(i)/Cu nanocatalysts for the multicomponent click synthesis of 1,2,3-triazoles

Supplementary files

Article information

Article type
Paper
Submitted
03 Sep 2012
Accepted
30 Oct 2012
First published
05 Nov 2012

Nanoscale, 2013,5, 342-350

New routes to Cu(I)/Cu nanocatalysts for the multicomponent click synthesis of 1,2,3-triazoles

P. Abdulkin, Y. Moglie, B. R. Knappett, D. A. Jefferson, M. Yus, F. Alonso and A. E. H. Wheatley, Nanoscale, 2013, 5, 342 DOI: 10.1039/C2NR32570E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements