Issue 4, 2012

Bioactive and electroactive response of flexible polythiophene:polyester nanomembranes for tissue engineering

Abstract

Properties of free-standing nanomembranes prepared by blending poly(3-thiophene methyl acetate) and poly(tetramethylene succinate), a soluble polythiophene derivative and a biodegradable polyester, respectively, have been examined. The outstanding flexibility and robustness of the nanomembranes floating in ethanol have been demonstrated through aspiration in pipette/release/shape recovery cycles, which were repeated without cracking the film. The blend retains the electrochemical properties (i.e. oxidation and reduction processes) of the individual conducting polymer in both physiological and organic environments. Hydrolytic and enzymatic degradation assays show that the degradation of the polyester domains produces the detachment of the conducting polymer domains. The cellular viability, which has been studied using four different cellular lines, is significantly higher for the blend than for the polyester, indicating that the former material is a potential bioactive platform for tissue engineering. Finally, the electrobioactivity of the individual materials and the blend coated with cellular monolayers shows some dependence on the cellular line.

Graphical abstract: Bioactive and electroactive response of flexible polythiophene:polyester nanomembranes for tissue engineering

Article information

Article type
Paper
Submitted
09 Dec 2011
Accepted
10 Jan 2012
First published
01 Feb 2012

Polym. Chem., 2012,3, 979-991

Bioactive and electroactive response of flexible polythiophene:polyester nanomembranes for tissue engineering

M. M. Pérez-Madrigal, E. Armelin, L. J. del Valle, F. Estrany and C. Alemán, Polym. Chem., 2012, 3, 979 DOI: 10.1039/C2PY00584K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements