Issue 21, 2012

Relative and inherent reactivities of imidazolium-based ionic liquids: the implications for lignocellulose processing applications

Abstract

Novel methods for the fractionation of wood, as a major renewable chemical and material feedstock, are in demand. Ionic liquids, such as 1-ethyl-3-methylimidazolium acetate ([emim][OAc]), are promoted as potential media for these processes. However, the chemical stabilities of such ionic liquids are in question as they may have an effect on process sustainability or efficiency. With anion nucleophilicity and basicity being implicated more in ionic liquid reactivity, a rough scale of the relative reactivities for [emim]-based ionic liquids is demonstrated, based upon their TGA decomposition temperatures. These values are compared to the proton affinities for the anions of those ionic liquids, as a crude measure of nucleophilicity or basicity. The implications for the temperature-dependent chemical stability of imidazolium-based ionic liquids are discussed, in regard to their interactions with wood biopolymers. It is observed that for ionic liquids with less diffuse anions (more nucleophilic or basic), such as [emim][OAc], they unfortunately become more unstable. This is exhibited by a decrease in the thermal stability and an increase in the degree of interaction with the biomass, to the point of better solvation and even covalent interactions with dissolved components. The ab initio proton affinities, dipole moments, van der Waals surface area, and volumes, are presented for an extended series of anions, commonly used in ionic liquids.

Graphical abstract: Relative and inherent reactivities of imidazolium-based ionic liquids: the implications for lignocellulose processing applications

Supplementary files

Article information

Article type
Paper
Submitted
26 Jun 2012
Accepted
26 Jun 2012
First published
27 Jun 2012

RSC Adv., 2012,2, 8020-8026

Relative and inherent reactivities of imidazolium-based ionic liquids: the implications for lignocellulose processing applications

A. W. T. King, A. Parviainen, P. Karhunen, J. Matikainen, L. K. J. Hauru, H. Sixta and I. Kilpeläinen, RSC Adv., 2012, 2, 8020 DOI: 10.1039/C2RA21287K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements