Issue 32, 2012

pH-tunable gradients of wettability and surface potential

Abstract

Smart materials that can sense and respond to changes in the environment are of interest in numerous and diverse applications. In this paper, we report gradient surfaces where wettability and surface potential respond to changes in the pH. The gradients are produced by controlling the concentration of amine and carboxyl acid groups across the surface. The response of surface wettability to pH changes was studied by water contact angle measurements. The potential across the surface was determined by atomic force microscopy-based surface force measurements. These studies showed that at low pH the surface potential changes from “no charge” at the acid end to a positive charge at the amine end. At high pH the surface potential changed from negative at the acid end to “no charge” at the amine side. At an intermediate pH the charge across the surface changes from negative at the acid end to positive at the amine end. Potential applications include separation or guidance of charged entities such as particles, proteins or bacteria.

Graphical abstract: pH-tunable gradients of wettability and surface potential

Supplementary files

Article information

Article type
Paper
Submitted
30 Jan 2012
Accepted
21 May 2012
First published
04 Jul 2012

Soft Matter, 2012,8, 8399-8404

pH-tunable gradients of wettability and surface potential

A. Mierczynska, A. Michelmore, A. Tripathi, R. V. Goreham, R. Sedev and K. Vasilev, Soft Matter, 2012, 8, 8399 DOI: 10.1039/C2SM25221J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements