Issue 2, 2013

Design principles for superamphiphobic surfaces

Abstract

To predict the properties of superamphiphobic layers we analyzed the wetting of a square and a hexagonal array of vertical pillars composed of spheres (radius R) partially sintered together. Apparent contact angles above 150° are obtained by pinning of a non-polar liquid surface at the underside of the top sphere resulting in a Fakir or Cassie state. Analytical equations are derived for the impalement pressure in the limiting case A0R2, where A0 is the area of the regular unit cell containing a single pillar. The case of close pillars is investigated numerically. By balancing forces at the rim of a drop, we calculate the apparent receding contact angle. To describe drag reduction of a flowing liquid we calculate the apparent slip length. When considering pressure-induced flow through cylindrical capillaries of radius rc, significant drag reduction occurs only for thin capillaries. The mechanical stability with respect to normal forces and shear is analyzed. Nanoscopic silica glass pillars would be able to sustain the normal and shear stresses caused by capillary and drag forces. For a high impalement pressure and good mechanical stability A0 should be small and R (respectively the neck diameter) should be large, whereas a large A0 and a small R imply low contact angle hysteresis and high slip length.

Graphical abstract: Design principles for superamphiphobic surfaces

Article information

Article type
Paper
Submitted
31 Aug 2012
Accepted
04 Oct 2012
First published
23 Oct 2012

Soft Matter, 2013,9, 418-428

Design principles for superamphiphobic surfaces

H. Butt, C. Semprebon, P. Papadopoulos, D. Vollmer, M. Brinkmann and M. Ciccotti, Soft Matter, 2013, 9, 418 DOI: 10.1039/C2SM27016A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements