Issue 5, 2013

The role of the electrostatic double layer interactions in the formation of nanoparticle ring-like deposits at driven receding contact lines

Abstract

In order to produce well-ordered structures via evaporation, it is essential to control the evaporation flux, solute concentration, interaction between the solute and the substrate, etc. During the drying of particle suspensions, the particle deposition process can be dictated by electrostatic and van der Waals forces. However, the complex physics involved in the drying of colloidal particle suspensions and the erratic contact line dynamics of evaporating sessile drops complicate the analysis of the problem. In this work, we propose a new methodology based on shrinking sessile drops to standardize the contact line dynamics of evaporating drops, but with no observable evaporation (macroscopic scale). We used a microinjector to decrease the drop volume through a small hole drilled in the substrate. Unlike drying drops, with our methodology the particle concentration in the drop bulk remained constant during the entire process and the macroevaporation was negligible. We probed the arrangement of nanoparticles at driven receding contact lines, with low capillary numbers and at time scales shorter than during free evaporation. The electrostatic double layer interactions were modified by diluting the nanoparticles in buffer solutions at different pH values. We also examined the impact of the wettability contrast between the substrate and the particle on the deposit morphology. We found that the ring-like deposits formed at driven contact lines might be suppressed with strongly interacting particles.

Graphical abstract: The role of the electrostatic double layer interactions in the formation of nanoparticle ring-like deposits at driven receding contact lines

Supplementary files

Article information

Article type
Paper
Submitted
03 Sep 2012
Accepted
22 Nov 2012
First published
12 Dec 2012

Soft Matter, 2013,9, 1664-1673

The role of the electrostatic double layer interactions in the formation of nanoparticle ring-like deposits at driven receding contact lines

C. L. Moraila-Martínez, M. A. Cabrerizo-Vílchez and M. A. Rodríguez-Valverde, Soft Matter, 2013, 9, 1664 DOI: 10.1039/C2SM27040D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements