Issue 4, 2013

Simple design but marvelous performances: molecular gels of superior strength and self-healing properties

Abstract

Four nitrobenzoxadiazole (NBD)-containing cholesteryl (Chol) derivatives were prepared, and their gelation behaviors were tested. It was demonstrated that the compounds show a remarkable gelling ability. In particular, a subtle change in the length of the spacers connecting the two structural units of the compounds, which are NBD and Chol, respectively, produced a dramatic change in the gelation ability and the gel properties of the compounds. As for gelation, compound 1 is much more powerful than others, especially in the gelation of methanol-containing organic mixtures. It is to be noted that the gel of 1/pyridinemethanol exhibits superior mechanical strength with a yield stress higher than 6300 Pa at a gelator concentration of 2.5% (w/v), and the value exceeds 23 000 Pa when the gelator concentration reaches 5.0% (w/v), a result never reported before in the field of molecular gels based on low-molecular mass gelators (LMMGs). More importantly, the gel shows a rapid self-healing property as evidenced by the fact that the gel heals up immediately upon cutting, provided the segments from the cutting are squeezed together. No doubt, our findings establish a benchmark for LMMG-based molecular gels in their rheological performances. FTIR, 1H NMR and XRD studies revealed that intermolecular hydrogen bonding and π–π stacking are two of the main driving forces to promote the gelation of the system and the self-assembling of the molecules of the gelator.

Graphical abstract: Simple design but marvelous performances: molecular gels of superior strength and self-healing properties

Supplementary files

Article information

Article type
Paper
Submitted
25 Sep 2012
Accepted
05 Nov 2012
First published
19 Nov 2012

Soft Matter, 2013,9, 1091-1099

Simple design but marvelous performances: molecular gels of superior strength and self-healing properties

Z. Xu, J. Peng, N. Yan, H. Yu, S. Zhang, K. Liu and Y. Fang, Soft Matter, 2013, 9, 1091 DOI: 10.1039/C2SM27208C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements