Issue 14, 2013

Fourier-transform infrared spectroscopy coupled with a classification machine for the analysis of blood plasma or serum: a novel diagnostic approach for ovarian cancer

Abstract

Currently available screening tests do not deliver the required sensitivity and specificity for accurate diagnosis of ovarian or endometrial cancer. Infrared (IR) spectroscopy of blood plasma or serum is a rapid, versatile, and relatively non-invasive approach which could characterize biomolecular alterations due to cancer and has potential to be utilized as a screening or diagnostic tool. In the past, no such approach has been investigated for its applicability in screening and/or diagnosis of gynaecological cancers. We set out to determine whether attenuated total reflection Fourier-transform IR (ATR-FTIR) spectroscopy coupled with a proposed classification machine could be applied to IR spectra obtained from plasma and serum for accurate class prediction (cancer vs. normal). Plasma and serum samples were obtained from ovarian cancer cases (n = 30), endometrial cancer cases (n = 30) and non-cancer controls (n = 30), and subjected to ATR-FTIR spectroscopy. Four derived datasets were processed to estimate the real-world diagnosis of ovarian and endometrial cancer. Classification results for ovarian cancer were remarkable (up to 96.7%), whereas endometrial cancer was classified with a relatively high accuracy (up to 81.7%). The results from different combinations of feature extraction and classification methods, and also classifier ensembles, were compared. No single classification system performed best for all different datasets. This demonstrates the need for a framework that can accommodate a diverse set of analytical methods in order to be adaptable to different datasets. This pilot study suggests that ATR-FTIR spectroscopy of blood is a robust tool for accurate diagnosis, and carries the potential to be utilized as a screening test for ovarian cancer in primary care settings. The proposed classification machine is a powerful tool which could be applied to classify the vibrational spectroscopy data of different biological systems (e.g., tissue, urine, saliva), with their potential application in clinical practice.

Graphical abstract: Fourier-transform infrared spectroscopy coupled with a classification machine for the analysis of blood plasma or serum: a novel diagnostic approach for ovarian cancer

Supplementary files

Article information

Article type
Paper
Submitted
09 Nov 2012
Accepted
07 Jan 2013
First published
08 Jan 2013

Analyst, 2013,138, 3917-3926

Fourier-transform infrared spectroscopy coupled with a classification machine for the analysis of blood plasma or serum: a novel diagnostic approach for ovarian cancer

K. Gajjar, J. Trevisan, G. Owens, P. J. Keating, N. J. Wood, H. F. Stringfellow, P. L. Martin-Hirsch and F. L. Martin, Analyst, 2013, 138, 3917 DOI: 10.1039/C3AN36654E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements