Issue 20, 2014

ZnS grain size effects on near-resonant Raman scattering: optical non-destructive grain size estimation

Abstract

Near-resonant Raman scattering measurements of zinc sulfide nanoparticles and thin films have been made and correlated to grain and particle size, respectively, using a 325 nm wavelength excitation source. The area ratios between the first, second, and third order peaks of ZnS identified as the T2(LO) mode decrease with increasing ZnS grain size. This is an effect attributed to changes in the bandgap energy from quantum confinement due to the varying grain size between the films/particles, as noted by a shift in the room temperature photoluminescence emission corresponding to the free exciton emission energy. While Raman scattering spectroscopy is typically limited to identification of phases and their crystalline properties, it is possible to attain more than such straightforward information by calibrating the spectral features to variations between sets of samples. These results open the possibility of making a quantitative grain size estimation in ZnS thin films and nanostructures, as well as in other material systems where ZnS may be expected as a secondary phase, such as Cu2ZnSnS4. Additionally, more commonly used excitation wavelengths for Raman scattering, such as 514 and 532 nm, are shown to be of limited use in characterizing ZnS thin films due to the extremely low Raman scattering efficiency of ZnS in films with sub-micron thicknesses.

Graphical abstract: ZnS grain size effects on near-resonant Raman scattering: optical non-destructive grain size estimation

Article information

Article type
Paper
Submitted
18 Dec 2013
Accepted
31 Jan 2014
First published
07 Mar 2014

CrystEngComm, 2014,16, 4120-4125

ZnS grain size effects on near-resonant Raman scattering: optical non-destructive grain size estimation

A. Fairbrother, V. Izquierdo-Roca, X. Fontané, M. Ibáñez, A. Cabot, E. Saucedo and A. Pérez-Rodríguez, CrystEngComm, 2014, 16, 4120 DOI: 10.1039/C3CE42578A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements