Issue 26, 2013

On the sensitivity of hard X-ray spectroscopies to the chemical state of Br

Abstract

The sensitivity of the 1s X-ray emission and high-energy-resolution fluorescence-detected X-ray absorption spectroscopies (XES and HERFD-XAS) to resolve the variations in the chemical state (electronic structure and local coordination) of Br has been investigated for a selected set of compounds including NaBrO3, NH4Br and C2H4Br2 (1,2-dibromoethane). For the Br K-edge XAS, employing the HERFD mode significantly increases the energy resolution, which demonstrates that with a crystal spectrometer used as a detector the absorption technique becomes a more powerful analytical tool. In the case of XES, the experimental results as well as the density functional theory (DFT) modeling both show that the chemical sensitivity of the main 1s diagram emission lines (Kα1,2 and Kβ1,3) is rather limited. However, the valence-to-core (Kβ2) region of XES displays significant shape and intensity variations, as expected for transitions having the same final states as those of photoemission spectroscopy. The spectra are in good agreement with the molecular orbital description delivered by DFT calculations. Calculations for an extended series of Br compounds confirm that valence-to-core XES can serve as a probe for chemical analysis, and, being a hard X-ray photon-in/photon-out technique, it is particularly well-suited for in situ investigations of molecular transformations, even on the ultrafast time scales down to femtosecond time resolution.

Graphical abstract: On the sensitivity of hard X-ray spectroscopies to the chemical state of Br

Article information

Article type
Paper
Submitted
25 Jan 2013
Accepted
28 Apr 2013
First published
01 May 2013

Phys. Chem. Chem. Phys., 2013,15, 11088-11098

On the sensitivity of hard X-ray spectroscopies to the chemical state of Br

A. Bordage, M. Pápai, N. S. Sas, J. Szlachetko, M. Nachtegaal and G. Vankó, Phys. Chem. Chem. Phys., 2013, 15, 11088 DOI: 10.1039/C3CP50367D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements