Issue 18, 2013

Manipulating dynamics with chemical structure: probing vibrationally-enhanced tunnelling in photoexcited catechol

Abstract

Ultrafast time-resolved velocity map ion imaging (TR-VMI) and time-resolved ion-yield (TR-IY) methods are utilised to reveal a comprehensive picture of the electronic state relaxation dynamics in photoexcited catechol (1,2-dihydroxybenzene). After excitation to the S1 (1ππ*) state between 280.5 (the S1 origin band, S1(v = 0)) to 243 nm, the population in this state is observed to decay through coupling onto the S2 (1πσ*) state, which is dissociative with respect to the non-hydrogen bonded ‘free’ O–H bond (labelled O1–H). This process occurs via tunnelling under an S1/S2 conical intersection (CI) on a timeframe of 5–11 ps, resulting in O1–H bond fission along S2. Concomitant formation of ground state catechoxyl radicals (C6H5O2(X)), in coincidence with translationally excited H-atoms, occurs over the same timescale as the S1 state population decays. Between 254–237 nm, direct excitation to the S2 state is also observed, manifesting in the ultrafast (∼100 fs) formation of H-atoms with high kinetic energy release. From these measurements we determine that the S1/S2 CI lies ∼3700–5500 cm−1 above the S1(v = 0) level, indicating that the barrier height to tunnelling from S1(v = 0) → S2 is comparable to that observed in the related ‘benchmark’ species phenol (hydroxybenzene). We discuss how a highly ‘vibrationally-enhanced’ tunnelling mechanism is responsible for the two orders of magnitude enhancement to the tunnelling rate in catechol, relative to that previously determined in phenol (>1.2 ns), despite similar barrier heights. This phenomenon is a direct consequence of the non-planar S1 excited state minimum structure (C1 symmetry) in catechol, which in turn yields relaxed symmetry constraints for vibronic coupling from S1(v = 0) → S2 – a scenario which does not exist for phenol. These findings offer an elegant example of how even simple chemical modifications (ortho-hydroxy substitution) to a fundamental, biologically relevant, UV chromophore, such as phenol, can have profound effects on the ensuing excited state dynamics.

Graphical abstract: Manipulating dynamics with chemical structure: probing vibrationally-enhanced tunnelling in photoexcited catechol

Supplementary files

Article information

Article type
Paper
Submitted
05 Feb 2013
Accepted
18 Mar 2013
First published
22 Mar 2013

Phys. Chem. Chem. Phys., 2013,15, 6879-6892

Manipulating dynamics with chemical structure: probing vibrationally-enhanced tunnelling in photoexcited catechol

A. S. Chatterley, J. D. Young, D. Townsend, J. M. Żurek, M. J. Paterson, G. M. Roberts and V. G. Stavros, Phys. Chem. Chem. Phys., 2013, 15, 6879 DOI: 10.1039/C3CP51108A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements