Issue 27, 2013

Effect of the state of distribution of supported Pt nanoparticles on effective Pt utilization in polymer electrolyte fuel cells

Abstract

In polymer electrolyte fuel cells, it is essential to minimize Pt loading, particularly at the cathode, without serious loss of performance. From this point of view, we will report an advanced concept for the design of high performance catalysts and membrane–electrode assemblies (MEAs): first, the evaluation of Pt particle distributions on both the interior and exterior walls of various types of carbon black (CB) particles used as supports with respect to the “effective surface (ES)”; second, control of both size and location of Pt particles by means of a new preparation method (nanocapsule method); and finally, a new evaluation method for the properties of MEAs based on the Pt utilization (UPt), mass activity (MA), and effectiveness of Pt (EfPt), based on the ES concept. The amounts of Pt catalyst particles located in the CB nanopores were directly evaluated using the transmission electron microscopy, scanning electron microscopy and corresponding three-dimensional images. By use of the nanocapsule method and optimization of the ionomer, increased MA and EfPt values for the MEA were achieved. The improvement in the cathode performance can be attributed to the sharp particle-size distribution for Pt and the highly uniform dispersion on the exterior surface of graphitized carbon black (GCB) supports.

Graphical abstract: Effect of the state of distribution of supported Pt nanoparticles on effective Pt utilization in polymer electrolyte fuel cells

Article information

Article type
Paper
Submitted
28 Apr 2013
Accepted
02 May 2013
First published
29 May 2013

Phys. Chem. Chem. Phys., 2013,15, 11236-11247

Effect of the state of distribution of supported Pt nanoparticles on effective Pt utilization in polymer electrolyte fuel cells

M. Uchida, Y. Park, K. Kakinuma, H. Yano, D. A. Tryk, T. Kamino, H. Uchida and M. Watanabe, Phys. Chem. Chem. Phys., 2013, 15, 11236 DOI: 10.1039/C3CP51801A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements