Issue 16, 2014

Importance of dispersion forces for prediction of thermodynamic and transport properties of some common ionic liquids

Abstract

An extensive study of interaction energies in ion pairs of pyrrolidinium and imidazolium ionic liquids is presented. The Cnmpyr and Cnmim cations with varying alkyl chains from Methyl, Ethyl, n-Propyl to n-Butyl were combined with a wide range of routinely used IL anions such as chloride, bromide, mesylate (CH3SO3 or Mes), tosylate (CH3PhSO3 or Tos), bis(trifluoromethanesulfonyl)amide (NTf2), dicyanamide (N(CN)2 or dca), tetrafluoroborate (BF4) and hexafluorophosphate (PF6). A number of energetically favourable conformations were studied for each cation–anion combination. The interaction energy and its dispersion component of the single ion pairs were calculated using a sophisticated state-of-the-art approach: a second-order of Symmetry Adapted Perturbation Theory (SAPT). A comparison of energetics depending on the cation–anion type, as well as the mode of interaction was performed. Dispersion forces were confirmed to be of importance for the overall stabilisation of ionic liquids contributing from 28 kJ mol−1 in pyrrolidinium ion pairs to 59 kJ mol−1 in imidazolium ion pairs. The previously proposed ratio of total interaction energy to dispersion components and melting points was assessed for this set of ionic liquids and was found to correlate with their melting points for the anionic series, producing separate trends for the Cnmim and Cmpyr series of cations. Chlorides, bromides and tetrafluoroborates formed close-to-ideal correlations when both types of cations, Cnmim and Cnmpyr, were combined in the same trend. Correlation of the dispersion component of the interaction energy with transport properties such as conductivity and viscosity was also considered. For imidazolium-based ionic liquids strong linear correlations were obtained, whereas pyrrolidinium ionic liquids appeared to be insensitive to this correlation.

Graphical abstract: Importance of dispersion forces for prediction of thermodynamic and transport properties of some common ionic liquids

Supplementary files

Article information

Article type
Paper
Submitted
19 Jul 2013
Accepted
23 Sep 2013
First published
24 Sep 2013

Phys. Chem. Chem. Phys., 2014,16, 7209-7221

Importance of dispersion forces for prediction of thermodynamic and transport properties of some common ionic liquids

E. I. Izgorodina, D. Golze, R. Maganti, V. Armel, M. Taige, T. J. S. Schubert and D. R. MacFarlane, Phys. Chem. Chem. Phys., 2014, 16, 7209 DOI: 10.1039/C3CP53035C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements