Issue 46, 2013

Selective DMSO-induced conformational changes in proteins from Raman optical activity

Abstract

The function of a protein is determined by its structure, which is intrinsically related to its solvent environment. Based on this paradigm, there has been a great deal of interest in the role that non-aqueous solvents play in regulating protein structure, with some debate in the literature regarding dimethyl sulfoxide (DMSO). Thus, in this work we have used Raman and Raman optical activity (ROA) spectroscopies to investigate conclusively the changes induced by DMSO in the secondary structure of an array of proteins including human serum albumin (highly α-helical), bovine α-lactalbumin (mainly α-helical), bovine ribonuclease A (containing both α-helix and β-sheet), bovine β-lactoglobulin (mainly β-sheet), and bovine α-casein (disordered). Our results clearly demonstrate that 100% DMSO solutions destabilize α-helices completely, converting them into the poly(L-proline) II (PPII) helix conformation. However, low concentrations of DMSO (10% v/v) were found to have little effect on the structure of even the most helical protein, human serum albumin. In the case of α-casein, the natively unfolded protein rich in PPII helix was converted into a further disordered structure when dissolved in pure DMSO. By contrast, β-sheets remained mostly unaffected regardless of DMSO concentration. While providing new insights into protein structure in organic solvents, this work reinforces the capability of vibrational optical activity to assess conformations of biomolecules in conditions not accessible to other techniques, such as X-ray crystallography and NMR.

Graphical abstract: Selective DMSO-induced conformational changes in proteins from Raman optical activity

Supplementary files

Article information

Article type
Paper
Submitted
19 Aug 2013
Accepted
21 Oct 2013
First published
22 Oct 2013

Phys. Chem. Chem. Phys., 2013,15, 20147-20152

Selective DMSO-induced conformational changes in proteins from Raman optical activity

A. N. L. Batista, J. M. Batista Jr, V. S. Bolzani, M. Furlan and E. W. Blanch, Phys. Chem. Chem. Phys., 2013, 15, 20147 DOI: 10.1039/C3CP53525H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements