Issue 11, 2014

Micellar drug nanocarriers and biomembranes: how do they interact?

Abstract

Pluronic based formulations are among the most successful nanomedicines and block-copolymer micelles including drugs that are undergoing phase I/II studies as anticancer agents. Using coarse-grained models, molecular dynamics simulations of large-scale systems, modeling Pluronic micelles interacting with DPPC lipid bilayers, on the μs timescale have been performed. Simulations show, in agreement with experiments, the release of Pluronic chains from the micelle to the bilayer. This release changes the size of the micelle. Moreover, the presence of drug molecules inside the core of the micelle has a strong influence on this process. The picture emerging from the simulations is that the micelle stability is a result of an interplay of drug–micelle core and block-copolymer–bilayer interactions. The equilibrium size of the drug vector shows a strong dependency on the hydrophobicity of the drug molecules embedded in the core of the micelle. In particular, the radius of the micelle shows an abrupt increase in a very narrow range of drug molecule hydrophobicity.

Graphical abstract: Micellar drug nanocarriers and biomembranes: how do they interact?

Supplementary files

Article information

Article type
Paper
Submitted
08 Oct 2013
Accepted
03 Jan 2014
First published
13 Jan 2014

Phys. Chem. Chem. Phys., 2014,16, 5093-5105

Micellar drug nanocarriers and biomembranes: how do they interact?

A. De Nicola, S. Hezaveh, Y. Zhao, T. Kawakatsu, D. Roccatano and G. Milano, Phys. Chem. Chem. Phys., 2014, 16, 5093 DOI: 10.1039/C3CP54242D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements