Issue 7, 2014

The effect of water on the structural, electronic and photocatalytic properties of graphitic carbon nitride

Abstract

g-C3N4, as a typical metal-free catalyst for water splitting, has attracted special attention. The structural and electronic properties of water adsorption on g-C3N4 play a key role in understanding the water splitting mechanism at the atomic level. The properties of a single g-C3N4 sheet and the water adsorption on a single g-C3N4 sheet were thoroughly explored based on density functional theory (DFT) calculations. The results show that water adsorption on one side of the single g-C3N4 sheet will lead the initial flat structure to change to a buckle one, while water molecule adsorption on both sides of g-C3N4 will not disturb the flat structure. The flat g-C3N4 is an indirect semiconductor, and interestingly the band structure of g-C3N4 changes from an indirect to a direct one during the flat structure transformation from flat to buckle because of the water adsorption. Water molecules prefer to adsorb around the intrinsic vacancy of the single g-C3N4 sheet at low coverage, and further adsorbed water molecules stay around the intrinsic vacancy. Water adsorption also affects the band edge position of g-C3N4 for water splitting. These results provide a deep insight into the structure and adsorption properties of g-C3N4 in the water environment, which will greatly help to design a new type of metal-free catalyst for water-splitting.

Graphical abstract: The effect of water on the structural, electronic and photocatalytic properties of graphitic carbon nitride

Article information

Article type
Paper
Submitted
14 Oct 2013
Accepted
03 Dec 2013
First published
16 Dec 2013

Phys. Chem. Chem. Phys., 2014,16, 3299-3304

The effect of water on the structural, electronic and photocatalytic properties of graphitic carbon nitride

H. Wu, L. Liu and S. Zhao, Phys. Chem. Chem. Phys., 2014, 16, 3299 DOI: 10.1039/C3CP54333A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements