Issue 17, 2014

Modelling the effects of salt solutions on the hydration of calcium ions

Abstract

Classical molecular dynamics simulations of several aqueous alkali halide salt solutions have been used to determine the effect of electrolytes on the structure of water and the hydration properties of calcium ions. Compared with the simulations of Ca2+ ions in pure liquid water, the frequency of water exchange in the first hydration shell of calcium, which is a fundamental process in controlling the reactivity of calcium(II) aqua-ions, is drastically reduced in the presence of other electrolytes in solution. The strong stabilization of the hydration shell of Ca2+ occurs not only when the halide anions are directly coordinated to calcium, but also when the alkali and halide ions are placed at or outside the second coordination shell of Ca2+, suggesting that the reactivity of the first solvation shell of the calcium ion can be influenced by the specific affinity of other ions in solution for the water molecules coordinated to Ca2+. Analysis of the hydrogen-bonded structure of water in the vicinity of the calcium ion shows that the average number of hydrogen bonds per water molecules, which is 1.8 in pure liquid water, decreases as the concentration of alkali–halide salts in solution increases, and that the temporal fluctuations of hydrogen bonds are significantly larger than those obtained for Ca2+ in pure liquid water. This effect has been explained in terms of the dynamics of reorganization of the O–H⋯X (X = F, Cl and Br) hydrogen bond. This work shows the importance of solution composition in determining the hydrogen-bonding network and ligand-exchange dynamics around metal ions, both in solution and at the mineral–water interfaces, which in turn has implications for interactions occurring at the mineral–water interface, ultimately controlling the mobilization of ions in the environment as well as in industrial processes.

Graphical abstract: Modelling the effects of salt solutions on the hydration of calcium ions

Supplementary files

Article information

Article type
Paper
Submitted
21 Nov 2013
Accepted
06 Mar 2014
First published
07 Mar 2014

Phys. Chem. Chem. Phys., 2014,16, 7772-7785

Author version available

Modelling the effects of salt solutions on the hydration of calcium ions

D. Di Tommaso, E. Ruiz-Agudo, N. H. de Leeuw, A. Putnis and C. V. Putnis, Phys. Chem. Chem. Phys., 2014, 16, 7772 DOI: 10.1039/C3CP54923B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements