Issue 3, 2014

Eco-friendly synthesis of bio-additive fuels from renewable glycerol using nanocrystalline SnO2-based solid acids

Abstract

The present work has been undertaken with an aim to synthesize valuable bio-additive fuels from glycerol acetalization using SnO2-based solid acids. Various promoters, namely SO42−, MoO3 and WO3 were incorporated to the SnO2 using a wet-impregnation method. An extensive physicochemical characterization has been achieved by means of XRD, BET surface area, BJH analysis, FT-IR, pyridine adsorbed FT-IR, NH3-TPD, ICP-OES and XPS techniques. The BET surface area of SnO2 is significantly improved from 11 to 32, 56 and 41 m2 g−1 after the addition of the WO3, MoO3, and SO42− promoters, respectively. The XPS studies revealed that Sn is present in the +4 oxidation state, whereas Mo, W and S are in the +6 oxidation state in the prepared samples. In addition, the SO42−/SnO2 sample contained super acidic sites, along with strong- and medium-acidic sites. The amount of acidic sites was found to be 46.47, 61.81, 81.45 and 186.98 μmol g−1 for the SnO2, WO3/SnO2, MoO3/SnO2, and SO42−/SnO2 samples, respectively. The pyridine adsorbed FT-IR studies revealed the existence of a superior quantity of Brønsted acidic sites than Lewis acidic sites in the synthesized catalysts. Promoted SnO2 catalysts exhibited a promising catalytic performance for glycerol acetalization with acetone and furfural, and the activity of the catalysts was found to increase in the following order: SnO2 < WO3/SnO2 < MoO3/SnO2 < SO42−/SnO2. The outstanding performance of the SO42−/SnO2 catalyst is mainly due to the existence of a large amount of acidic sites associated with the super acidic sites. The achieved optimum glycerol conversions with acetone and furfural were ~98 and 99% over the SO42−/SnO2 catalyst, respectively.

Graphical abstract: Eco-friendly synthesis of bio-additive fuels from renewable glycerol using nanocrystalline SnO2-based solid acids

Supplementary files

Article information

Article type
Paper
Submitted
20 Oct 2013
Accepted
27 Nov 2013
First published
02 Dec 2013

Catal. Sci. Technol., 2014,4, 803-813

Eco-friendly synthesis of bio-additive fuels from renewable glycerol using nanocrystalline SnO2-based solid acids

B. Mallesham, P. Sudarsanam and B. M. Reddy, Catal. Sci. Technol., 2014, 4, 803 DOI: 10.1039/C3CY00825H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements