Issue 26, 2013

Thermoelectric properties of Zn-doped Ca5In2Sb6

Abstract

The Zintl compound Ca5Al2Sb6 is a promising thermoelectric material with exceptionally low lattice thermal conductivity resulting from its complex crystal structure. In common with the Al analogue, Ca5In2Sb6 is naturally an intrinsic semiconductor with a low p-type carrier concentration. Here, we improve the thermoelectric properties of Ca5In2Sb6 by substituting Zn2+ on the In3+ site. With increasing Zn substitution, the Ca5In2−xZnxSb6 system exhibits increased p-type carrier concentration and a resulting transition from non-degenerate to degenerate semiconducting behavior. A single parabolic band model was used to estimate an effective mass in Ca5In2Sb6 of m* = 2me, which is comparable to the Al analogue, in good agreement with density functional calculations. Doping with Zn enables rational optimization of the electronic transport properties and increased zT in accordance with a single parabolic band model. The maximum figure of merit obtained in optimally Zn-doped Ca5In2Sb6 is 0.7 at 1000 K. While undoped Ca5In2Sb6 has both improved electronic mobility and reduced lattice thermal conductivity relative to Ca5Al2Sb6, these benefits did not dramatically improve the Zn-doped samples, leading to only a modest increase in zT relative to optimally doped Ca5Al2Sb6.

Graphical abstract: Thermoelectric properties of Zn-doped Ca5In2Sb6

Article information

Article type
Paper
Submitted
14 Feb 2013
Accepted
22 Apr 2013
First published
17 May 2013

Dalton Trans., 2013,42, 9713-9719

Thermoelectric properties of Zn-doped Ca5In2Sb6

A. Zevalkink, J. Swallow and G. J. Snyder, Dalton Trans., 2013, 42, 9713 DOI: 10.1039/C3DT50428J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements