Issue 8, 2013

Selective aqueous phase oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over Pt/C catalysts: influence of the base and effect of bismuth promotion

Abstract

5-Hydroxymethylfurfural (HMF) was quantitatively oxidized to 2,5-furandicarboxylic acid (FDCA) at 100 °C under 40 bar air in moderately basic aqueous solution in the presence of active carbon supported platinum and bismuth–platinum catalysts. The transformation of HMF into FDCA proceeded via the 5-hydroxymethyl-2-furancarboxylic acid (HMFCA) and 2,5-diformylfuran (DFF) intermediates; both of these were very reactive and rapidly oxidized to 5-formylfurancarboxylic acid (FFCA), the subsequent oxidation of which was found to be the rate-limiting step. The preparation method of the platinum catalysts influenced the particle size of metallic platinum and modified the surface of the support, therefore determining the activity. The addition of a carbonate base (Na2CO3/HMF molar ratio = 2) led to faster overall conversion than bicarbonate (NaHCO3/HMF = 4) by maintaining an appropriate pH for the oxidation reaction. The ex situ or in situ addition of a bismuth promoter still accelerated the reaction; the highest activity was observed for a Bi/Pt molar ratio of ca. 0.2. Furthermore, the promoter helped to prevent some deactivation of the Pt catalyst upon recycling experiments. Quantitative conversion of HMF (0.1 M) and >99% yield of FDCA were achieved using a molar ratio of HMF to Pt of 100 and Na2CO3 as the homogeneous base in less than 2 h.

Graphical abstract: Selective aqueous phase oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over Pt/C catalysts: influence of the base and effect of bismuth promotion

Supplementary files

Article information

Article type
Paper
Submitted
17 Apr 2013
Accepted
10 Jun 2013
First published
10 Jun 2013

Green Chem., 2013,15, 2240-2251

Selective aqueous phase oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over Pt/C catalysts: influence of the base and effect of bismuth promotion

H. Ait Rass, N. Essayem and M. Besson, Green Chem., 2013, 15, 2240 DOI: 10.1039/C3GC40727F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements