Issue 4, 2014

Biodegradation behavior of bacterial-based polyhydroxyalkanoate (PHA) and DDGS composites

Abstract

The extensive use of plastics in agriculture has increased the need for development and implementation of polymer materials that can degrade in soils under natural conditions. The biodegradation behavior in soil of polyhydroxyalkanoate (PHA) composites with 10 wt% distiller's dried grains with solubles (DDGS) was characterized and compared to pure PHA over 24 weeks. Injection-molded samples were measured for degradation weight loss every 4 weeks, and the effects of degradation times on morphological, thermomechanical, and viscoelastic properties were evaluated by scanning electron microscopy (SEM), dynamic mechanical analysis (DMA), and small-amplitude oscillatory shear flow experiments. Incorporation of DDGS had a strong effect on biodegradation rate, mechanical properties, and production cost. Material weight loss increased linearly with increasing biodegradation time for both neat PHA and the PHA/DDGS 90/10 composites. Weight loss after 24 weeks was approximately six times greater for the PHA/DDGS 90/10 composites than for unaltered PHA under identical conditions. Rough surface morphology was observed in early biodegradation stages (≥8 weeks). With increasing biodegradation time, the composite surface eroded and was covered with well-defined pits that were evenly distributed, giving an areolate structure. Zero shear viscosity, Tg, gelation temperature, and cold crystallization temperature of the composites decreased linearly with increasing biodegradation time. Addition of DDGS to PHA establishes mechanical and biodegradation properties that can be utilized in sustainable plastics designed to end their lifecycle as organic matter in soil. Our results provide information that will guide development of PHA composites that fulfill application requirements then degrade harmlessly in soil.

Graphical abstract: Biodegradation behavior of bacterial-based polyhydroxyalkanoate (PHA) and DDGS composites

Article information

Article type
Paper
Submitted
27 Jul 2013
Accepted
19 Nov 2013
First published
20 Nov 2013

Green Chem., 2014,16, 1911-1920

Biodegradation behavior of bacterial-based polyhydroxyalkanoate (PHA) and DDGS composites

S. A. Madbouly, J. A. Schrader, G. Srinivasan, K. Liu, K. G. McCabe, D. Grewell, W. R. Graves and M. R. Kessler, Green Chem., 2014, 16, 1911 DOI: 10.1039/C3GC41503A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements