Issue 1, 2014

Development of back-extraction and recyclability routes for ionic-liquid-based aqueous two-phase systems

Abstract

In the last decade, aqueous two-phase systems (ATPS) composed of ionic liquids (ILs) and inorganic salts have been largely explored as novel extractive platforms. The use of ILs as phase-forming components in ATPS has led to outstanding extraction performances compared to more traditional approaches. Nevertheless, despite those exceptional achievements, IL regeneration, recycling and reuse lagged behind and still remain a challenging task towards the development of greener cost-effective processes. Aiming at overcoming these shortcomings, the phase diagrams of novel ATPS composed of imidazolium-based ILs and Na2CO3 or Na2SO4 were determined and their extraction efficiencies for a model antioxidant – gallic acid – were evaluated. The most promising IL-based ATPS were then used in sequential two-step cycles (product extraction/IL recovery) so as to evaluate the efficacy on the IL recyclability and reusability. Extraction efficiency values ranging between 73% and 99% were obtained in four sequential partitioning experiments involving gallic acid while allowing the regeneration of 94–95% of the IL and further reutilization. Moreover, to support the vast applicability of the back-extraction routes and the recyclability concept proposed here, the most prominent systems were further tested with two additional antioxidants, namely syringic and vanillic acids. In both examples, the extraction efficiencies were higher than 97%. The remarkable results obtained in this work support the establishment of IL-based ATPS as a sound basis of greener cost-effective strategies with a substantial reduction in the environmental footprint and economical issues.

Graphical abstract: Development of back-extraction and recyclability routes for ionic-liquid-based aqueous two-phase systems

Supplementary files

Article information

Article type
Paper
Submitted
24 Sep 2013
Accepted
16 Oct 2013
First published
17 Oct 2013

Green Chem., 2014,16, 259-268

Development of back-extraction and recyclability routes for ionic-liquid-based aqueous two-phase systems

A. F. M. Cláudio, C. F. C. Marques, I. Boal-Palheiros, M. G. Freire and J. A. P. Coutinho, Green Chem., 2014, 16, 259 DOI: 10.1039/C3GC41999A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements