Issue 3, 2014

A simplified protocol for measurement of Ca isotopes in biological samples

Abstract

We describe a chemical separation protocol of calcium from biological materials for isotopic measurement by multiple collector inductively coupled plasma mass spectrometry (MC-ICPMS). The method was tested using elution profiles along with HCl and HNO3 acids only, on human urine, sheep serum and red blood cells (RBC), seawater and herbaceous plants. It allows the elimination of all interfering species (including K, Sr, Mg) and the remaining matrix (including Fe, P, Na and S) beyond required levels. In order to further test this protocol and better understand the Ca isotopic signatures of mammalian fluids and organs, we purified and analyzed a wide range of materials from sheep, i.e. serum, RBC, muscle, liver, kidneys, enamel, bone, urine and feces. The data show a wide range of variations, expressed as δ, over 1‰ per amu, with a precision of 0.1‰ or better, spanning most of the variability reported so far. Red blood cells appeared to be heavier than serum by 0.3‰ per amu. This isotopic difference between serum and red blood cells was not taken into account in previous studies and it provides further information on Ca isotopic cycling in organisms. The Ca isotopic compositions of organs are correlated with concentrations, bone and RBC representing the two end-members, bone being Ca rich and 44Ca-depleted and RBC Ca poor and 44Ca-enriched. The trend is compatible with a distillation process by which Ca is extruded from cells along with a kinetic fractionation process favoring lighter Ca isotopes.

Graphical abstract: A simplified protocol for measurement of Ca isotopes in biological samples

Supplementary files

Article information

Article type
Paper
Submitted
07 Oct 2013
Accepted
05 Dec 2013
First published
06 Dec 2013

J. Anal. At. Spectrom., 2014,29, 529-535

A simplified protocol for measurement of Ca isotopes in biological samples

T. Tacail, E. Albalat, P. Télouk and V. Balter, J. Anal. At. Spectrom., 2014, 29, 529 DOI: 10.1039/C3JA50337B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements