Issue 21, 2013

Monolithically integrated biophotonic lab-on-a-chip for cell culture and simultaneous pH monitoring

Abstract

A poly(dimethylsiloxane) biophotonic lab-on-a-chip (bioPhLoC) containing two chambers, an incubation chamber and a monitoring chamber for cell retention/proliferation and pH monitoring, respectively, is presented. The bioPhLoC monolithically integrates a filter with 3 μm high size-exclusion microchannels, capable of efficiently trapping cells in the incubation chamber, as well as optical elements for real-time interrogation of both chambers. The integrated optical elements made possible both absorption and dispersion measurements, which were comparable to those made in a commercially available cuvette. The size-exclusion filter also showed good and stable trapping capacity when using yeast cells of variable size (between 5 and 8 μm diameter). For cell culture applications, vascular smooth muscle cells (VSMC), with sizes between 8 and 10 μm diameter, were used as a mammalian cell model. These cells were efficiently trapped in the incubation chamber, where they proliferated with a classical spindle-shaped morphology and a traditional hill-and-valley phenotype. During cell proliferation, pH changes in the culture medium due to cell metabolism were monitored in real time and with high precision in the monitoring chamber without interference of the measurement by cells and other (cell) debris.

Graphical abstract: Monolithically integrated biophotonic lab-on-a-chip for cell culture and simultaneous pH monitoring

Supplementary files

Article information

Article type
Paper
Submitted
21 Jun 2013
Accepted
05 Aug 2013
First published
07 Aug 2013

Lab Chip, 2013,13, 4239-4247

Monolithically integrated biophotonic lab-on-a-chip for cell culture and simultaneous pH monitoring

X. Muñoz-Berbel, R. Rodríguez-Rodríguez, N. Vigués, S. Demming, J. Mas, S. Büttgenbach, E. Verpoorte, P. Ortiz and A. Llobera, Lab Chip, 2013, 13, 4239 DOI: 10.1039/C3LC50746G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements