Issue 12, 2013

Design and biological evaluation of synthetic retinoids: probing length vs. stability vs. activity

Abstract

All trans-retinoic acid (ATRA) is widely used to direct the differentiation of cultured stem cells. When exposed to the pluripotent human embryonal carcinoma (EC) stem cell line, TERA2.cl.SP12, ATRA induces ectoderm differentiation and the formation of neuronal cell types. We report in this study that novel polyene chain length analogues of ATRA require a specific chain length to elicit a biological responses of the EC cells TERA2.cl.SP12, with synthetic retinoid AH61 being particularly active, and indeed more so than ATRA. The impacts of both the synthetic retinoid AH61 and natural ATRA on the TERA2.cl.SP12 cells were directly compared using both RT-PCR and Fourier Transform Infrared Micro-Spectroscopy (FT-IRMS) coupled with multivariate analysis. Analytical results produced from this study also confirmed that the synthetic retinoid AH61 had biological activity comparable or greater than that of ATRA. In addition to this, AH61 has the added advantage of greater compound stability than ATRA, therefore, avoiding issues of oxidation or decomposition during use with embryonic stem cells.

Graphical abstract: Design and biological evaluation of synthetic retinoids: probing length vs. stability vs. activity

Article information

Article type
Paper
Submitted
10 Jul 2013
Accepted
02 Oct 2013
First published
03 Oct 2013
This article is Open Access
Creative Commons BY license

Mol. BioSyst., 2013,9, 3124-3134

Design and biological evaluation of synthetic retinoids: probing length vs. stability vs. activity

G. Clemens, K. R. Flower, P. Gardner, A. P. Henderson, J. P. Knowles, T. B. Marder, A. Whiting and S. Przyborski, Mol. BioSyst., 2013, 9, 3124 DOI: 10.1039/C3MB70273A

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements