Issue 4, 2013

Co(ii)-detection does not follow Kco(ii) gradient: channelling in Co(ii)-sensing

Abstract

The MerR-like transcriptional activator CoaR detects surplus Co(II) to regulate Co(II) efflux in a cyanobacterium. This organism also has cytosolic metal-sensors from three further families represented by Zn(II)-sensors ZiaR and Zur plus Ni(II)-sensor InrS. Here we discover by competition with Fura-2 that CoaR has KCo(II) weaker than 7 × 10−8 M, which is weaker than ZiaR, Zur and InrS (KCo(II) = 6.94 ± 1.3 × 10−10 M; 4.56 ± 0.16 × 10−10 M; and 7.69 ± 1.1 × 10−9 M respectively). KCo(II) for CoaR is also weak in the CoaR–DNA adduct. Further, Co(II) promotes DNA-dissociation by ZiaR and DNA-association by Zur in vitro in a manner analogous to Zn(II), as monitored by fluorescence anisotropy. After 48 h exposure to maximum non-inhibitory [Co(II)], CoaR responds in vivo yet the two Zn(II)-sensors do not, despite their tighter KCo(II) and despite Co(II) triggering allostery in ZiaR and Zur in vitro. These data imply that the two Zn(II) sensors fail to respond because they fail to gain access to Co(II) under these conditions in vivo. Several lines of evidence suggest that CoaR is membrane associated via a domain with sequence similarity to precorrin isomerase, an enzyme of vitamin B12 biosynthesis. Moreover, site directed mutagenesis reveals that transcriptional activation requires CoaR residues that are predicted to form hydrogen bonds to a tetrapyrrole. The Co(II)-requiring vitamin B12 biosynthetic pathway is also membrane associated suggesting putative mechanisms by which Co(II)-containing tetrapyrroles and/or Co(II) ions are channelled to CoaR.

Graphical abstract: Co(ii)-detection does not follow Kco(ii) gradient: channelling in Co(ii)-sensing

Supplementary files

Article information

Article type
Paper
Submitted
03 Dec 2012
Accepted
29 Jan 2013
First published
31 Jan 2013
This article is Open Access

Metallomics, 2013,5, 352-362

Spotlight

Advertisements