Issue 9, 2013

Chemical insight into electroforming of resistive switching manganite heterostructures

Abstract

We have investigated the role of the electroforming process in the establishment of resistive switching behaviour for Pt/Ti/Pr0.5Ca0.5MnO3/SrRuO3 layered heterostructures (Pt/Ti/PCMO/SRO) acting as non-volatile Resistance Random Access Memories (RRAMs). Electron spectroscopy measurements demonstrate that the higher resistance state resulting from electroforming of as-prepared devices is strictly correlated with the oxidation of the top electrode Ti layer through field-induced electromigration of oxygen ions. Conversely, PCMO exhibits oxygen depletion and downward change of the chemical potential for both resistive states. Impedance spectroscopy analysis, supported by the detailed knowledge of these effects, provides an accurate model description of the device resistive behaviour. The main contributions to the change of resistance from the as-prepared (low resistance) to the electroformed (high resistance) states are respectively due to reduced PCMO at the boundary with the Ti electrode and to the formation of an anisotropic n–p junction between the Ti and the PCMO layers.

Graphical abstract: Chemical insight into electroforming of resistive switching manganite heterostructures

Supplementary files

Article information

Article type
Paper
Submitted
07 Jan 2013
Accepted
26 Feb 2013
First published
04 Mar 2013

Nanoscale, 2013,5, 3954-3960

Chemical insight into electroforming of resistive switching manganite heterostructures

F. Borgatti, C. Park, A. Herpers, F. Offi, R. Egoavil, Y. Yamashita, A. Yang, M. Kobata, K. Kobayashi, J. Verbeeck, G. Panaccione and R. Dittmann, Nanoscale, 2013, 5, 3954 DOI: 10.1039/C3NR00106G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements