Issue 11, 2013

Balancing power density based quantum yield characterization of upconverting nanoparticles for arbitrary excitation intensities

Abstract

Upconverting nanoparticles (UCNPs) have recently shown great potential as contrast agents in biological applications. In developing different UCNPs, the characterization of their quantum yield (QY) is a crucial issue, as the typically drastic decrease in QY for low excitation power densities can either impose a severe limitation or provide an opportunity in many applications. The power density dependence of the QY is governed by the competition between the energy transfer upconversion (ETU) rate and the linear decay rate in the depopulation of the intermediate state of the involved activator in the upconversion process. Here we show that the QYs of Yb3+ sensitized two-photon upconversion emissions can be well characterized by the balancing power density, at which the ETU rate and the linear decay rate have equal contributions, and its corresponding QY. The results in this paper provide a method to fully describe the QY of upconverting nanoparticles for arbitrary excitation power densities, and is a fast and simple approach for assessing the applicability of UCNPs from the perspective of energy conversion.

Graphical abstract: Balancing power density based quantum yield characterization of upconverting nanoparticles for arbitrary excitation intensities

Supplementary files

Article information

Article type
Paper
Submitted
26 Jan 2013
Accepted
15 Mar 2013
First published
20 Mar 2013

Nanoscale, 2013,5, 4770-4775

Balancing power density based quantum yield characterization of upconverting nanoparticles for arbitrary excitation intensities

H. Liu, C. T. Xu, D. Lindgren, H. Xie, D. Thomas, C. Gundlach and S. Andersson-Engels, Nanoscale, 2013, 5, 4770 DOI: 10.1039/C3NR00469D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements