Issue 16, 2013

Impacts of fullerene derivatives on regulating the structure and assembly of collagen molecules

Abstract

During cancer development, the fibrous layers surrounding the tumor surface get thin and stiff which facilitates the tumor metastasis. After the treatment of metallofullerene derivatives Gd@C82(OH)22, the fibrous layers become thicker and softer, the metastasis of tumor is then largely suppressed. The effect of Gd@C82(OH)22 was found to be related to their direct interaction with collagen and the resulting impact on the structure of collagen fibrils, the major component of extracellular matrices. In this work we study the interaction of Gd@C82(OH)22 with collagen by molecular dynamics simulations. We find that Gd@C82(OH)22 can enhance the rigidity of the native structure of collagen molecules and promote the formation of an oligomer or a microfibril. The interaction with Gd@C82(OH)22 may regulate further the assembly of collagen fibrils and change the biophysical properties of collagen. The control run with fullerene derivatives C60(OH)24 also indicates that C60(OH)24 can influence the structure and assembly of collagen molecules as well, but to a lesser degree. Both fullerene derivatives can form hydrogen bonds with multiple collagen molecules acting as a “fullerenol-mediated bridge” that enhance the interaction within or among collagen molecules. Compared to C60(OH)24, the interaction of Gd@C82(OH)22 with collagen is stronger, resulting in particular biomedical effects for regulating the biophysical properties of collagen fibrils.

Graphical abstract: Impacts of fullerene derivatives on regulating the structure and assembly of collagen molecules

Supplementary files

Article information

Article type
Paper
Submitted
25 Mar 2013
Accepted
15 May 2013
First published
17 May 2013

Nanoscale, 2013,5, 7341-7348

Impacts of fullerene derivatives on regulating the structure and assembly of collagen molecules

X. Yin, L. Zhao, S. Kang, J. Pan, Y. Song, M. Zhang, G. Xing, F. Wang, J. Li, R. Zhou and Y. Zhao, Nanoscale, 2013, 5, 7341 DOI: 10.1039/C3NR01469J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements