Issue 14, 2013

Benzynecycloaddition onto carbon nanohorns

Abstract

A facile approach for the covalent functionalization of carbon nanohorns (CNHs) based on the benzyne cycloaddition reaction is presented. The benzynes were in situ generated from either anthranilic acid by decomposition of the internal benzenediazonium-2-carboxylate or from 2-(trimethylsilyl)-phenyl triflate by fluoride ion attack at the silicon atom followed by displacement of the trimethylsilyl group under mild conditions. Moreover, the functionalization reaction was tested and performed under conventional conditions as well as under microwave irradiation. Modified CNHs possessing fused rings onto their graphitic skeleton were fully characterized by means of complementary spectroscopic techniques, thermogravimetric analysis, electron microscopy and light scattering. Moreover, Sonogashira coupling with propargyl alcohol followed by condensation with thioctic acid, to the iodo-modified CNHs obtained from the cycloaddition reaction of 2-amino-5-iodobenzoic acid with CNHs, resulted in the preparation of a new CNH-based material in which endocyclic disulfides are extended from the fused rings onto CNHs. The latter moieties were used to immobilize gold nanoparticles, furnishing the CNH–Aunano hybrid material, in which the former were identified with the aid of UV-Vis and EDX spectroscopy.

Graphical abstract: Benzyne cycloaddition onto carbon nanohorns

Supplementary files

Article information

Article type
Paper
Submitted
08 Apr 2013
Accepted
06 May 2013
First published
10 May 2013

Nanoscale, 2013,5, 6388-6394

Benzyne cycloaddition onto carbon nanohorns

D. Chronopoulos, N. Karousis, T. Ichihashi, M. Yudasaka, S. Iijima and N. Tagmatarchis, Nanoscale, 2013, 5, 6388 DOI: 10.1039/C3NR01755A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements