Issue 14, 2013

Plasmonic tuning of silver nanowires by laser shock induced lateral compression

Abstract

Laser shock induced lateral compression has been demonstrated to controllably flatten cylindrical silver nanowires. Nanowires with circular cross-sections of diameter 70 nm are significantly shaped laterally, which transformed them to metallic ribbons of huge width of 290 nm and of thickness down to 13 nm, amounting the aspect ratio to as high as 22, at a laser intensity of 0.30 GW cm−2. Above the laser intensity of 0.30 GW cm−2 though, nanowires are observed to be ruptured. Lateral deformations of nanowires are achieved without altering longitudinal dimensions. Selected area electron diffraction patterns on the laterally deformed nanowires reveal that the flattening gives rise to twinning under high strain rate deformation without actually degrading crystallinity. As the 1D nanowire turns into a 2D metallic nanoribbon, new plasmonic modes and their combinations emerge. The transverse plasmon mode does not shift substantially, whereas longitudinal modes and their combinations are greatly influenced by lateral deformation. Apart from the transverse mode, which is dominant in a 1D nanowire and diminishes heavily when lateral deformation occurs, there is a presence of several longitudinal plasmonic modes and their combinations for metallic nanoribbons, which are revealed by experimental extinction spectra and also supported by finite-difference time-domain (FDTD) simulation. Such plasmonic tuning of silver nanowires across the visible range demonstrates the capability of a laser shock induced lateral compression technique for various emerging plasmonic applications. The laser shock compression technique has the advantages of flexibility, selectivity and tunability while retaining crystallinity of metallic nanowires, all of which enable it to be a potential candidate for plasmonic tuning of nanogeometries.

Graphical abstract: Plasmonic tuning of silver nanowires by laser shock induced lateral compression

Article information

Article type
Communication
Submitted
26 Apr 2013
Accepted
23 May 2013
First published
24 May 2013

Nanoscale, 2013,5, 6311-6317

Plasmonic tuning of silver nanowires by laser shock induced lateral compression

P. Kumar, J. Li, Q. Nian, Y. Hu and G. J. Cheng, Nanoscale, 2013, 5, 6311 DOI: 10.1039/C3NR02104A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements