Issue 15, 2013

Protein–nanoparticle interactions: the effects of surface compositional and structural heterogeneity are scale dependent

Abstract

Nanoparticles (NPs) in the biological environment are exposed to a large variety and concentration of proteins. Proteins are known to adsorb in a ‘corona’ like structure on the surface of NPs. In this study, we focus on the effects of surface compositional and structural heterogeneity on protein adsorption by examining the interaction of self-assembled monolayer coated gold NPs (AuNPs) with two types of proteins: ubiquitin and fibrinogen. This work was designed to systematically investigate the role of surface heterogeneity in nanoparticle–protein interaction. We have chosen the particles as well as the proteins to provide different types (in distribution and length-scale) of heterogeneity. The goal was to unveil the role of heterogeneity and of its length-scale in the particle–protein interaction. Dynamic light scattering and circular dichroism spectroscopy were used to reveal different interactions at pH above and below the isoelectric points of the proteins, which is related to the charge heterogeneity on the protein surface. At pH 7.4, there was only a monolayer of proteins adsorbed onto the NPs and the secondary structure of proteins remained intact. At pH 4.0, large aggregates of nanoparticle–protein complexes were formed and the secondary structures of the proteins were significantly disrupted. In terms of interaction thermodynamics, results from isothermal titration calorimetry showed that ubiquitin adsorbed differently onto (1) AuNPs with charged and nonpolar terminals organized into nano-scale structure (66-34 OT), (2) AuNPs with randomly distributed terminals (66-34 brOT), and (3) AuNPs with homogeneously charged terminals (MUS). This difference in adsorption behavior was not observed when AuNPs interacted with fibrinogen. The results suggested that the interaction between the proteins and AuNPs was influenced by the surface heterogeneity on the AuNPs, and this influence depends on the scale of surface heterogeneity and the size of the proteins.

Graphical abstract: Protein–nanoparticle interactions: the effects of surface compositional and structural heterogeneity are scale dependent

Supplementary files

Article information

Article type
Paper
Submitted
28 Apr 2013
Accepted
22 May 2013
First published
23 May 2013

Nanoscale, 2013,5, 6928-6935

Protein–nanoparticle interactions: the effects of surface compositional and structural heterogeneity are scale dependent

R. Huang, R. P. Carney, F. Stellacci and B. L. T. Lau, Nanoscale, 2013, 5, 6928 DOI: 10.1039/C3NR02117C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements