Issue 17, 2013

The visible-light driven photocatalytic destruction of NOx using mesoporous TiO2 spheres synthesized via a “water-controlled release process”

Abstract

Mesoporous anatase TiO2 spheres with tunable sizes ranging from 400 nm to 3 μm were synthesized using an original so-called “water-controlled solvothemal release process”. In this method, the well-known esterification reaction between ethanol and acetic acid was creatively employed to generate water gradually during a solvothermal process. Thereafter, the slowly released water molecules functioned as nucleation centers for completing the hydrolysis of titanium tetraisopropoxide to produce homogenous mesoporous TiO2 spheres. In reality, these samples consisted of densely packed nanoparticles that formed spherical secondary particles with interparticle pores. Research has demonstrated that the diameter of the TiO2 spheres can be easily tuned by controlling the concentration of the Ti source in the starting solution. Regardless of their diameter, all of these TiO2 spheres exhibited a high specific surface area (above 150 m2 g−1) originating largely from the contribution of mesopores. On the merits of their porous structure and related high specific surface area, the mesoporous TiO2 spheres showed a higher photocatalytic activity than P25 for the oxidative photo-destruction of NOx gas.

Graphical abstract: The visible-light driven photocatalytic destruction of NOx using mesoporous TiO2 spheres synthesized via a “water-controlled release process”

Supplementary files

Article information

Article type
Paper
Submitted
08 May 2013
Accepted
13 Jun 2013
First published
14 Jun 2013

Nanoscale, 2013,5, 8184-8191

The visible-light driven photocatalytic destruction of NOx using mesoporous TiO2 spheres synthesized via a “water-controlled release process”

C. Guo, X. Wu, M. Yan, Q. Dong, S. Yin, T. Sato and S. Liu, Nanoscale, 2013, 5, 8184 DOI: 10.1039/C3NR02352D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements