Issue 3, 2014

Stokes emission in GdF3:Nd3+ nanoparticles for bioimaging probes

Abstract

There is increasing interest in rare earth (RE) doped nanoparticles (NPs) due to their sharp absorption and photoluminescence (PL) in the near infrared (NIR) spectral region. These NIR based nanoparticles (NPs) could allow biological imaging at substantial depths with enhanced contrast and high spatial resolution due to the absence of auto fluorescence in biological samples under infrared excitation. Here, we present the highly efficient infrared photoluminescence in GdF3:Nd3+ nanoparticles under 800 nm excitation within the hydrodynamic size limitations for bio-applications. The downconversion (Stokes emission) absolute quantum yields (QY) in powder, polymaleic anhydride-alt-1-octadicene (PMAO) coated powder and colloidal solutions have been investigated. QY measurements have revealed that downconversion (Stokes emission) QYs of approximately 5 ± 2 nm sized GdF3:1% Nd3+ colloidal NPs are 2000 times higher than those of efficient upconversion (UC) particles NaYF4:20% Er/2% Yb of the same size. Furthermore, the utility of these NIR emitting nanoparticles for bioimaging probes has been demonstrated by confocal imaging and spectroscopic study.

Graphical abstract: Stokes emission in GdF3:Nd3+ nanoparticles for bioimaging probes

Supplementary files

Article information

Article type
Paper
Submitted
27 Jun 2013
Accepted
15 Nov 2013
First published
25 Nov 2013

Nanoscale, 2014,6, 1667-1674

Stokes emission in GdF3:Nd3+ nanoparticles for bioimaging probes

M. Pokhrel, L. C. Mimun, B. Yust, G. A. Kumar, A. Dhanale, L. Tang and D. K. Sardar, Nanoscale, 2014, 6, 1667 DOI: 10.1039/C3NR03317A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements