Issue 7, 2014

MoS2 nanoresonators: intrinsically better than graphene?

Abstract

We perform classical molecular dynamics simulations to examine the intrinsic energy dissipation in single-layer MoS2 nanoresonators, where the point of emphasis is to compare their dissipation characteristics with those of single-layer graphene. Our key finding is that MoS2 nanoresonators exhibit significantly lower energy dissipation, and thus higher quality (Q)-factors by at least a factor of four below room temperature, than graphene. Furthermore, this high Q-factor endows MoS2 nanoresonators with a higher figure of merit, defined as frequency times Q-factor, despite a resonant frequency that is 50% smaller than that of graphene of the same size. By utilizing arguments from phonon–phonon scattering theory, we show that this reduced energy dissipation is enabled by the large energy gap in the phonon dispersion of MoS2, which separates the acoustic phonon branches from the optical phonon branches, leading to a preserving mechanism for the resonant oscillation of MoS2 nanoresonators. We further investigate the effects of tensile mechanical strain and nonlinear actuation on the Q-factors, where the tensile strain is found to counteract the reductions in Q-factor that occur with higher actuation amplitudes. Overall, our simulations illustrate the potential utility of MoS2 for high frequency sensing and actuation applications.

Graphical abstract: MoS2 nanoresonators: intrinsically better than graphene?

Article information

Article type
Paper
Submitted
11 Nov 2013
Accepted
31 Dec 2013
First published
14 Jan 2014

Nanoscale, 2014,6, 3618-3625

MoS2 nanoresonators: intrinsically better than graphene?

J. Jiang, H. S. Park and T. Rabczuk, Nanoscale, 2014, 6, 3618 DOI: 10.1039/C3NR05991J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements