Issue 2, 2014

Effects of fluorination on the properties of thieno[3,2-b]thiophene-bridged donor–π–acceptor polymer semiconductors

Abstract

Thieno[3,2-b]thiophene-bridged polymer semiconductors, P(BDT-TT-HBT) and P(BDT-TT-FBT), combining a benzo[1,2-b:4,5-b′]dithiophene donor unit and a benzothiadiazole or fluorinated benzothiadiazole acceptor unit, respectively, were designed and synthesized. The introduction of fluorine substituents remarkably influenced the molecular architecture, optical, electrochemical, and morphological properties of the polymers, as well as the optoelectronic performance of the devices made from these materials. The introduction of fluorine substituents on the benzothiadiazole unit not only down-shifted the HOMO energy level of the organic semiconductor but also enhanced the intra- and intermolecular interactions of the resulting conjugated polymer. As a result, the open-circuit voltage and mobility of corresponding devices based on the fluorinated polymer were enhanced markedly. Power conversion efficiencies of the polymer solar cells based on P(BDT-TT-HBT) and P(BDT-TT-FBT) reached 4.37% and 3.56%, with open circuit voltages of 0.72 and 0.81 V, respectively. The fluorinated polymer exhibited much higher mobilities (4.1 to 6.3 times) than the non-fluorinated polymer, reaching 0.017 cm2 V−1 s−1.

Graphical abstract: Effects of fluorination on the properties of thieno[3,2-b]thiophene-bridged donor–π–acceptor polymer semiconductors

Article information

Article type
Paper
Submitted
16 Jul 2013
Accepted
19 Aug 2013
First published
20 Aug 2013

Polym. Chem., 2014,5, 502-511

Effects of fluorination on the properties of thieno[3,2-b]thiophene-bridged donor–π–acceptor polymer semiconductors

X. Wang, Z. Zhang, H. Luo, S. Chen, S. Yu, H. Wang, X. Li, G. Yu and Y. Li, Polym. Chem., 2014, 5, 502 DOI: 10.1039/C3PY00940H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements