Issue 26, 2013

Small surface nanotopography encourages fibroblast and osteoblast cell adhesion

Abstract

In this paper, we report the initial response of 3T3 fibroblast and MG63 osteoblast cells to engineered nanotopography gradients of three nanoparticle diameters (16 nm, 38 nm and 68 nm). These nanoengineered surfaces were designed to provide a range of nanoparticle densities and comparable surface area across the gradients of different nanoparticle sizes. Importantly, we provided a uniform surface chemistry in order to be able to examine the effect of pure surface nanotopography. We found that nanotopography features of 16 nm encourage the adhesion of both cell types and that there is a critical nanoparticle density between 50 and 140 particles per μm2 where cells adhered in the greatest numbers. When nanotopography features increased to 38 nm the 3T3 cells adhered and spread well, however, the MG63 cells adhered and spread poorly. Both cell types adhered in lower numbers when the nanotopography feature size increased to 68 nm. This work demonstrates that there is a specific nanotopography scale that encourages cell adhesion and spreading, however, the preferential lateral spacing and height of the nanotopography is different for different cell types.

Graphical abstract: Small surface nanotopography encourages fibroblast and osteoblast cell adhesion

Supplementary files

Article information

Article type
Paper
Submitted
05 Dec 2012
Accepted
07 May 2013
First published
07 May 2013

RSC Adv., 2013,3, 10309-10317

Small surface nanotopography encourages fibroblast and osteoblast cell adhesion

R. V. Goreham, A. Mierczynska, L. E. Smith, R. Sedev and K. Vasilev, RSC Adv., 2013, 3, 10309 DOI: 10.1039/C3RA23193C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements