Issue 29, 2013

High tensile strength and high ionic conductivity bionanocomposite ionogels prepared by gelation of cellulose/ionic liquid solutions with nano-silica

Abstract

Novel bionanocomposite ionogels consisting of an ionic liquid (IL) 1-ethyl-3-methylimidazolium acetate (EMIMAc), microcrystalline cellulose (MCC) and nano-silica (nano-SiO2) particles with high tensile strength and high ionic conductivity have been successfully prepared. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) measurements reveal a homogeneous dispersion of nano-SiO2 in the MCC/nano-SiO2/EMIMAc bionanocomposite ionogels. In order to clarify the influences of added nano-SiO2 on the sol–gel transition process and liquid crystalline phase transition for the MCC/nano-SiO2/EMIMAc systems, the complexes were investigated by dynamic rheological measurements, mechanical tensile property tests and polarized optical microscope (POM) observations. The rheological results indicate that the introduction of nano-SiO2 can induce and accelerate the gelation for the MCC/nano-SiO2/EMIMAc solutions. By adjusting the MCC and nano-SiO2 concentrations, the gel-sol transition temperature and elastic modulus can be well controlled and the optimized values reach 125 °C and 7 × 105 Pa, respectively. The POM results reveal that the addition of nano-SiO2 significantly suppresses the liquid crystalline behavior of ionogels. A more significant result is that the bionanocomposite ionogels exhibit high ionic conductivity in the order of 10−3 S cm−1 at 30 °C. The ionic conductivity of the ionogels increases with increasing temperature and decreasing MCC concentration. The above results demonstrate that the novel bionanocomposite ionogels with high tensile strength are promising for the application as gel polymer electrolytes (GPE) in electrochemical devices.

Graphical abstract: High tensile strength and high ionic conductivity bionanocomposite ionogels prepared by gelation of cellulose/ionic liquid solutions with nano-silica

Article information

Article type
Paper
Submitted
23 Jan 2013
Accepted
19 Apr 2013
First published
05 Jun 2013

RSC Adv., 2013,3, 11665-11675

High tensile strength and high ionic conductivity bionanocomposite ionogels prepared by gelation of cellulose/ionic liquid solutions with nano-silica

H. Song, Z. Luo, H. Zhao, S. Luo, X. Wu, J. Gao and Z. Wang, RSC Adv., 2013, 3, 11665 DOI: 10.1039/C3RA40387D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements