Issue 5, 2014

Nanostructured palladium-reduced graphene oxide platform for high sensitive, label free detection of a cancer biomarker

Abstract

We report the results of studies related to the fabrication of a palladium nanoparticle decorated-reduced graphene oxide (Pd@rGO) based electrochemical immunosensor for the label free ultrasensitive detection of the prostate-specific antigen (PSA), a prostate cancer biomarker. The synergistic electrochemical activities of Pd and rGO result in an enhanced electron transfer used for the development of an ultrasensitive immunosensor. A facile approach was developed for the in situ synthesis of Pd@rGO using ascorbic acid as the reducing agent which enables the simultaneous reduction of both Pd+2 and GO into Pd nanoparticles and rGO, respectively. XRD, FTIR, SEM and TEM investigations were carried out to characterize the Pd@rGO material. A thin film of nanostructured Pd@rGO was electrophoretically deposited on an ITO coated glass electrode that was subsequently functionalized with anti-PSA antibodies. The electrochemical sensing results of the proposed immunosensor showed a high sensitivity {28.96 μA ml ng−1 cm−2}. The immunosensor is able to detect PSA at concentrations as low as 10 pg ml-1. The simple fabrication method, high sensitivity, good reproducibility and long term stability with acceptable accuracy in human serum samples are the main advantages of this immunosensor.

Graphical abstract: Nanostructured palladium-reduced graphene oxide platform for high sensitive, label free detection of a cancer biomarker

Supplementary files

Article information

Article type
Paper
Submitted
22 Apr 2013
Accepted
14 Oct 2013
First published
04 Dec 2013

RSC Adv., 2014,4, 2267-2273

Nanostructured palladium-reduced graphene oxide platform for high sensitive, label free detection of a cancer biomarker

V. Kumar, S. Srivastava, S. Umrao, R. Kumar, G. Nath, G. Sumana, P. S. Saxena and A. Srivastava, RSC Adv., 2014, 4, 2267 DOI: 10.1039/C3RA41986J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements