Issue 38, 2013

Ultrabright benzoselenadiazole-based semiconducting polymer dots for specific cellular imaging

Abstract

Semiconducting polymer dots (Pdots) have recently emerged as a new class of extraordinarily bright fluorescent probes with promising applications in biological imaging and sensing. Herein we synthesized a novel series of highly emissive orange-fluorescent copolymers, poly[9,9-dioctylfluorenyl-2,7-diyl)-co-1,4-benzo-{2,1′-3}-selenadiazole)] (PFBS) and tuned the ratio of fluorene to benzoselenadiazole (BS) from 98 : 2 to 50 : 50 to investigate the influence of BS molar ratio on the emission properties of the resulting Pdots. An optimal quantum yield of 44% could be obtained for PFBS Pdots at a fluorene to BS ratio of 70 : 30. These PFBS Pdots also exhibited great photostability and superior single-particle brightness. We next conjugated biomolecules onto the surface of these PFBS Pdots and demonstrated their ability for specific cellular labeling without any noticeable nonspecific binding. We are now working on the synthesis of near-infrared Pdots based on this BS unit and anticipate this series of ultrabright Pdots will be very useful in a variety of in vitro and in vivo bioimaging applications.

Graphical abstract: Ultrabright benzoselenadiazole-based semiconducting polymer dots for specific cellular imaging

Article information

Article type
Paper
Submitted
24 May 2013
Accepted
15 Jul 2013
First published
17 Jul 2013

RSC Adv., 2013,3, 17507-17514

Ultrabright benzoselenadiazole-based semiconducting polymer dots for specific cellular imaging

C. Chen, P. Wu, S. Liou and Y. Chan, RSC Adv., 2013, 3, 17507 DOI: 10.1039/C3RA42565G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements