Issue 29, 2014

Hybrid nanofibers from biodegradable polylactide and polythiophene for scaffolds

Abstract

Hybrid scaffolds constituted of polylactide (PLA) as a biodegradable polymer and poly(3-thiophene methyl acetate) (P3TMA) as an electroactive polymer were prepared and studied. Both polymers had a similar solubility and consequently could be easily electrospun using a common solvent. Electrospinning operational parameters were optimized to get continuous micro/nanofibers with a homogeneous diameter that ranged between 600 and 900 nm depending on the PLA–P3TMA ratio. Electrospinning was only effective when the P3TMA content was at maximum 50 wt%. The incorporation of P3TMA slightly decreased the fibre diameter, led to smoother fibre surfaces and gave rise to some heterogeneous clusters inside the fibers. PLA was highly oriented inside the electrospun fibers and able to easily cold crystallize by heating. Thermal degradation was not highly influenced by the presence of P3TMA, although the onset temperature slightly increased since the first decomposition step of PLA was prevented. New scaffolds had promising electrochemical properties and even provided a good substrate for cell adhesion and cell proliferation. Therefore, these hybrid materials are suitable to improve the cellular response towards physiological processes.

Graphical abstract: Hybrid nanofibers from biodegradable polylactide and polythiophene for scaffolds

Article information

Article type
Paper
Submitted
08 Jun 2013
Accepted
25 Feb 2014
First published
12 Mar 2014

RSC Adv., 2014,4, 15245-15255

Hybrid nanofibers from biodegradable polylactide and polythiophene for scaffolds

E. Llorens, M. M. Pérez-Madrigal, E. Armelin, L. J. del Valle, J. Puiggalí and C. Alemán, RSC Adv., 2014, 4, 15245 DOI: 10.1039/C3RA42829J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements