Issue 43, 2013

Integration of mixed conducting membranes in an oxygen–steam biomass gasification process

Abstract

Oxygen–steam biomass gasification produces a high quality syngas with a high H2/CO ratio that is suitable for upgrading to liquid fuels. Such a gas is also well suited for use in conjunction with solid oxide fuel cells giving rise to a system yielding high electrical efficiency based on biomass. However, high costs for both oxygen supply equipment and operation are significant challenges for the commercial implementation of this technology. Mixed ionic and electronic conducting (MIEC) membranes can be used for oxygen separation from air at a lower energy consumption compared to cryogenic distillation, especially for small to medium scale plants. This paper examines different configurations for oxygen production using MIEC membranes where the oxygen partial pressure difference is achieved by creating a vacuum on the permeate side, compressing the air on the feed side or a combination of the two. The two configurations demonstrating the highest efficiency are then thermally integrated into an oxygen–steam biomass gasification plant. The energy demand for oxygen production and the membrane area required for a 6 MWth biomass plant are calculated for different operating conditions. Increasing the air feed pressure increases the energy consumption but decreases the membrane area. As an example, for the highest efficiency configuration working at a membrane temperature of 850 °C, 6 bar of air feed pressure and 0.3 bar of permeate side pressure, 150 m2 are needed to generate the oxygen for the 6 MWth plant at an energy consumption of 100 kW h per tO2.

Graphical abstract: Integration of mixed conducting membranes in an oxygen–steam biomass gasification process

Article information

Article type
Paper
Submitted
03 Jul 2013
Accepted
29 Aug 2013
First published
30 Aug 2013

RSC Adv., 2013,3, 20843-20854

Integration of mixed conducting membranes in an oxygen–steam biomass gasification process

M. Puig-Arnavat, S. Soprani, M. Søgaard, K. Engelbrecht, J. Ahrenfeldt, U. B. Henriksen and P. V. Hendriksen, RSC Adv., 2013, 3, 20843 DOI: 10.1039/C3RA44509G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements