Issue 19, 2014

Imine-linked chemosensors for the detection of Zn2+ in biological samples

Abstract

A chemosensor 1 with a long hydrocarbon chain and polar end group is synthesized by the simple condensation reaction of a long chain amine with salicylaldehyde. A long chain hydrocarbon with a polar end group is used because of its solubility in an aqueous surfactant solution, which ensures that it can be used in a neutral water medium. The rationale for choosing an aryl aldehyde with –OH functionality is based upon the fact that a chelate ring consisting of an –OH group and an sp2 nitrogen donor is always better for the selective recognition of Zn2+. The sensor shows selective binding to Zn2+ in 1% Triton-X-100 solution. Binding of Zn2+ by sensor 3 leads to an approximately 300% enhancement in the fluorescence intensity of the sensor, due to the combined effects of excited state intramolecular proton transfer (ESIPT) and the inhibition of the photo-induced electron transfer (PET) process by the –OH group. The fluorescence emission profiles of sensor 1 show some changes in the low and high pH ranges, however the sensor remains stable in the pH range 4–9, which makes it appropriate for use in biological fluids.

Graphical abstract: Imine-linked chemosensors for the detection of Zn2+ in biological samples

Supplementary files

Article information

Article type
Paper
Submitted
16 Nov 2013
Accepted
13 Dec 2013
First published
16 Dec 2013

RSC Adv., 2014,4, 9784-9790

Imine-linked chemosensors for the detection of Zn2+ in biological samples

P. Saluja, V. K. Bhardwaj, T. Pandiyan, S. Kaur, N. Kaur and N. Singh, RSC Adv., 2014, 4, 9784 DOI: 10.1039/C3RA46759G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements