Issue 23, 2014

Enzymatic oxidation as a potential new route to produce polysaccharide aerogels

Abstract

Specific enzymatic oxidation of terminal galactosyl-containing polysaccharides (guar galactomannan (GM), and tamarind seed galactoxyloglucan (XG)) was used to prepare hydrogels. The hydrogels were lyophilized to form novel types of polysaccharide aerogels: biobased and biodegradable, lightweight, and stiff materials. The compressive moduli of the aerogels were greatly dependent on the oxidation, polysaccharide type, freezing method, and ambient moisture. Ice crystal templated, oriented aerogels from oxidized XG (XG-OX) showed the highest compressive modulus, 359 kPa, when determined parallel to the freezing and drying direction (i.e., the vertical direction). The water vapor sorption of freeze-dried GM and XG was not significantly affected by oxidation, even though the oxidized GM (GM-OX) and XG-OX aerogels were no longer water-soluble. GM-OX and XG-OX aerogels absorbed liquid water 40 and 20 times their initial weight, respectively. Focused ion beam scanning electron microscopy showed that the inner structure of oriented aerogels from GM-OX consisted of a honeycomb architecture with a pore diameter of some tens of micrometers. On the other hand, corresponding aerogels from XG-OX seemed to contain longer capillaries oriented in the freezing direction. This observation was supported by imaging the XG-OX aerogels using high-resolution synchrotron X-ray microtomography. The enzymatic hydro- and aerogel preparation method is considered a green way to obtain novel, functional products from polysaccharides.

Graphical abstract: Enzymatic oxidation as a potential new route to produce polysaccharide aerogels

Article information

Article type
Paper
Submitted
09 Dec 2013
Accepted
17 Feb 2014
First published
18 Feb 2014

RSC Adv., 2014,4, 11884-11892

Enzymatic oxidation as a potential new route to produce polysaccharide aerogels

K. S. Mikkonen, K. Parikka, J. Suuronen, A. Ghafar, R. Serimaa and M. Tenkanen, RSC Adv., 2014, 4, 11884 DOI: 10.1039/C3RA47440B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements