Issue 16, 2014

Unexpected different chemoselectivity in the aerobic oxidation of methylated planar catechin and bent epicatechin derivatives catalysed by the Trametes villosa laccase/1-hydroxybenzotriazole system

Abstract

Unreported methylated catechin and epicatechin derivatives 5 and 6 were synthesized by an oxa-Pictet-Spengler reaction. Catechin 5 shows the B and C rings coplanar because of the formation of a trans junction between the C ring and the newly generated six-term cycle D, in turn condensed to ring B. In contrast, epicatechin 6 presents a bent geometry due to the establishment of a cis junction between the C ring and the newly formed cycle D. The oxidation of compounds 5 and 6 in the presence of the Trametes villosa laccase/1-hydroxybenzotriazole (HBT) system was investigated under aerobic conditions in both a biphasic system and a reverse micelle. The unexpected different chemoselective oxidation at the benzylic position of catechin and epicatechin derivatives 5 and 6 has been rationalized using a molecular modelling approach. These results demonstrate that the Trametes villosa laccase/HBT system represents a useful tool to functionalize the C-2 or C-4 position of phenolic compounds depending on the structural features.

Graphical abstract: Unexpected different chemoselectivity in the aerobic oxidation of methylated planar catechin and bent epicatechin derivatives catalysed by the Trametes villosa laccase/1-hydroxybenzotriazole system

Supplementary files

Article information

Article type
Paper
Submitted
05 Aug 2013
Accepted
06 Jan 2014
First published
14 Jan 2014

RSC Adv., 2014,4, 8183-8190

Unexpected different chemoselectivity in the aerobic oxidation of methylated planar catechin and bent epicatechin derivatives catalysed by the Trametes villosa laccase/1-hydroxybenzotriazole system

R. Bernini, F. Crisante, P. Gentili, S. Menta, F. Morana and M. Pierini, RSC Adv., 2014, 4, 8183 DOI: 10.1039/C3RA47753C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements