Issue 5, 2013

High-intensity near-IR fluorescence in semiconducting polymer dots achieved by cascade FRET strategy

Abstract

Near-IR (NIR) emitting semiconducting polymer dots (Pdots) with ultrabright fluorescence have been prepared for specific cellular targeting. A series of π-conjugated polymers were synthesized to form water dispersible multicomponent Pdots by an ultrasonication-assisted co-precipitation method. By optimizing cascade energy transfer in Pdots, high-intensity NIR fluorescence (Φ = 0.32) with tunable excitations, large absorption–emission separation (up to 330 nm), and narrow emission bands (FWHM = 44 nm) have been achieved. Single-particle fluorescence imaging show that the as-prepared NIR Pdots were more than three times brighter than the commercially available Qdot705 with comparable sizes under identical conditions of excitation and detection. Because of the covalent introduction of carboxylic acid groups into polymer side chains, the bioconjugation between NIR-emitting Pdots and streptavidins can be readily completed via these functional groups on the surface of Pdots. Furthermore, through flow cytometry and confocal fluorescence microscopy the NIR-emitting Pdot–streptavidin conjugates proved that they could effectively label EpCAM receptors on the surface of MCF-7 cells, via specific binding between streptavidin and biotin.

Graphical abstract: High-intensity near-IR fluorescence in semiconducting polymer dots achieved by cascade FRET strategy

Supplementary files

Article information

Article type
Edge Article
Submitted
25 Jan 2013
Accepted
27 Feb 2013
First published
27 Feb 2013

Chem. Sci., 2013,4, 2143-2151

High-intensity near-IR fluorescence in semiconducting polymer dots achieved by cascade FRET strategy

X. Zhang, J. Yu, Y. Rong, F. Ye, D. T. Chiu and K. Uvdal, Chem. Sci., 2013, 4, 2143 DOI: 10.1039/C3SC50222H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements