Issue 7, 2013

The role of solvent cohesion in nonpolar solvation

Abstract

Understanding hydrophobic interactions requires a molecular-level picture of how water molecules adjust to the introduction of a nonpolar solute. New insights into the latter process are derived from the observation that the Gibbs energies of solvation of the noble gases and linear alkanes by a wide range of solvents, including water, correlate well with linear combinations of internal pressure (Pi) and cohesive energy density (ced) of the solvent. Pi and ced are empirical solvent parameters that quantify two different aspects of solvent cohesion: the former reflects the cost of creating a cavity by a subtle rearrangement of solvent molecules, whereas the latter captures the cost of creating a cavity with complete disruption of solvent–solvent interactions. For the solvation of smaller solutes the internal pressure is the dominant parameter, while for larger solutes the ced becomes more important. The intriguing observation that the solubility of alkanes in water decreases with increasing chain length, whereas the solubility of noble gases increases with increasing size, can be understood by considering the different relative influences of the ced and Pi on the solvation processes of both classes of compounds. Also the solvation enthalpy, but not the entropy, correlates with linear combinations of solvent ced and Pi, albeit poorly, suggesting that the good correlations observed for the Gibbs energy are largely due to enthalpy, most likely that related to cavity formation.

Graphical abstract: The role of solvent cohesion in nonpolar solvation

Supplementary files

Article information

Article type
Edge Article
Submitted
18 Mar 2013
Accepted
07 May 2013
First published
09 May 2013

Chem. Sci., 2013,4, 2953-2959

The role of solvent cohesion in nonpolar solvation

S. Otto, Chem. Sci., 2013, 4, 2953 DOI: 10.1039/C3SC50740H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements